Russian River Biological Assessment

Flow Proposal

Where did it come from?

- Grew out of the Section 7consultation under Endangered Species Act
- Improves conditions for young
 - salmonids in
 - -Russian River,
 - -Dry Creek, and
 - Estuary

Section 7 Consultation

- Required under ESA
- Reviews activities of the Corps,
 SCWA in the Russian River
- Change operations to reduce adverse effects to salmon and steelhead
- Authorizes "take" and sets limits

Formal Process

 Corps of Engineers and SCWA - Prepare BA

NOAA Fisheries Prepares Biological
 Opinion

 Corps of Engineers and SCWA - conduct CEQA/NEPA review

Actions under Consultation

- Flood control and hydropower
- Water supply and transmission
- Flow and estuary management
- Channel maintenance
- Conservation measures
- Fish production facilities

Develop Alternative Actions

- Bypass flows at Coyote Dam
- Fish screen upgrade at Mirabel and Wohler diversions
- Coho captive brood stock program
- Flow Proposal
- Inflatable Dam Operation

Draft BA

- Identifies environmental baseline
- Suggests changes in facilities and operations
- Effects on coho, steelhead and Chinook

Problems with Existing Flows

Velocities are too high for young steelhead and coho salmon

- Upper Russian River
 - -Ukiah to Hopland Reach
 - -Hopland to Cloverdale Reach
- Dry Creek

Dry Creek

130 cfs

40 cfs

Problems with Existing Flows

Water Temperatures increase in September in the Upper Russian River

 Run out of cool water in Lake Mendocino

Problems with Existing Flows

High flows disrupt cool refuge areas

- Tributaries input cooler water temperatures
- Existing flows mix water reducing the effects of cool water inflow from tributaries

Water Temperatures Upper Russian River

September Median Monthly Temperature for the Russian River Current Operations under D1610 and the Flow Proposal

Problems with Existing Flow

High inflows create the need for artificial breaching of the sand bar

- Allows entry of adult Chinook when river conditions are unsuitable
- Risk of "flushing" young fish out of the estuary prematurely

Russian River Estuary

Open

Closed

Flow Proposal

What is a Flow Proposal anyway?

- A flow proposal defines minimum flow levels in a stream system to protect beneficial uses.
- These minimum flows are specified as limitations in a water right permit or license.

Minimum Flow Requirements

- Minimum flows are traditionally specified by:
 - -month
 - -reach of river
 - -water supply condition.

What are the Lower River minimum flows now?

 From the Dry Creek confluence to the estuary, the minimum flow rates are currently:

-Normal Year 125 cfs

Dry Year85 cfs

-Critical Year 35 cfs

What are the Lower River flows now?

- Average flows from 1986-present:
 - -June 360 cfs
 - -July 200 cfs
 - -Aug 180 cfs
 - -Sept 180 cfs

Compare actual flows with minimum flows...

- June 235 cfs higher
- July 75 cfs higher
- Aug 55 cfs higher
- Sept 55 cfs higher

Flow Proposal

 The flow proposal was developed to mitigate flow-related impacts to listed species.

Flow Proposal

- The flow proposal has components designed to address impacts in the areas identified
 - -Russian River
 - Dry Creek
 - Estuary

Flow Proposal – Upper River

- Above Healdsburg, the summer flows will be slightly reduced to create habitat that is more beneficial to the listed species.
- Future releases would be held slightly below current levels.
- The reduction will help conserve the cold water pool in Lake Mendocino and maintain habitat complexity.

Flow Proposal Dry Creek

 Summer flow in Dry Creek would usually be held to between 50 and 90 cfs. Currently summer releases can approach 140 cfs.

Flow Proposal – Lower River

- Minimum flow requirements would change daily to more closely match natural hydrologic patterns.
- An absolute minimum of 35 cfs would ensure habitat continuity under all hydrologic circumstances.

Model Simulation – Lower River

- Summertime flows would be about:
 - -June 160 cfs
 - -July 75 cfs
 - -Aug 60 cfs
 - -Sept 70 cfs

Limiting Factor: summer rearing habitat for steelhead

Russian River

- Maintain habitat values
- Cooler temperatures in late summer
- Cool water refuge habitat

Limiting Factor: summer rearing for steelhead and coho salmon

Dry Creek

- Cool water temperatures
- Lower velocities
- More complexity

Limiting Factor: summer rearing for steelhead and coho salmon

Summer Estuary rearing conditions

- more stable rearing conditions
- improved food availability
- freshwater conditions

Estuary Studies Show:

- Well-managed lagoons are heavily used by salmonids
- Summertime breaching can negatively affect rearing conditions
- With sufficient inflow, lagoons "freshen" - excellent rearing habitat

Problem: Entry of adult Chinook salmon in August and September

Better timing for entry for Chinook adults

Problem: Breaching can "flush" rearing fish into seawater

Reduced risk to juveniles

Russian River Estuary

 Stable, freshwater conditions in the Estuary would address a limiting factor - summer rearing habitat

Implementation of Flow Proposal

- BA finalized (April 2004)
- Final BO issued (Dec 2004)
- Final EIR/EIS (Dec 2007)
- State Water Resources Control Board Process (2007-2011)
- State Water Resources Control Board Decision (2011)

Summary

